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Abstract. With no odjuslable pammrys the gmundstate properties of the spin-polarized 
bosonic fluids H1 and T1 are obrained via quantum thermodynamic pemubation theory. Here. 
perturbations are developed around the corresponding repulsive-sphere gas. The amac!ive and 
repulsive portions of the interatomic interaction potential (Lennard-Jones and Kolos-Wolniewicz) 
are decomposed as pro@ by BarLer and Henderson and by Weeks, Chandler and Anderson. 
The various density series for the energy are exuapolated. order by order, to physical densities 
via Pad6 and relaled approximants. The pressure and the sound velocity carves can be oblained 
fmm the energy. The difference between our results and variational results is only significant at 
higher densities, where our energy curves p e d y  lie lower. 

1. Introduction 

The suggestion [ I ]  of the possibility of extreme quantum behaviour in bulk spin-polarized 
hydrogen atoms, and later the experiment of Silvera and Walraven [2] showing this for 
hydrogen atoms by applying intense (- 10 T f  magnetic fields at low (- IO-* K) temperature, 
motivated increased efforts to stabilize these new ‘spin-polarized quantum systems’ at 
increasingly higher densities. In the particular case of spin-polarized atomic hydrogen 
HL, even greater interest lies in the hope of eventually reaching densities high enough to 
observe a Bose-Einstein condensation (BEC) in this very weakly interacting quantum gas. 
However, the recombination of the hydrogen atoms on the container walls as well as in the 
bulk has thus far limited the prospects of this hope. 

A great deal of work has been devoted to the theoretical problem of calculating the 
ground-state energy of a system of N bosonic particles described by a given Hamiltonian, 
when N tends to infinity [3-15]. These computations have mainly been standard variational 
or Monte Carlo variational ones. So, for example, in the pioneering works of Dugan and 
Etters 131 and Etters et a1 141, the ground-state properties were obtained for spin-polarized 
hydrogen isotopes. The well known interaction potential between particles according to 
Kolos and Wolniewicz (KW), figure 1, was fitted by a Morse potential form. They then 

11 On leave from the lnstituto de Ffsica, Universidad Nacional Aut6noma de Mhico, OlwO Mexico, DF, Mexico. 
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applied the variational Monte Carlo method for a bite number of particles inside a 
box whose volume corresponds to a choice of system density. To simulate the infinite 
system it was necessary to replicate the box and its contents in all directions by imposing 
periodic boundary conditions. They concluded that, unlike atomic hydrogen, tritium forms 
a liquid at 0 K. Nosanow et ai [5 ]  studied withii the context of the quantum theorem 
of corresponding states the zero-temperature properties of systems obeying either Bose 
Einstein or Fermi-Dirac statistics. This was applied by Miller and Nosanow [lo] to 
the ground-state properties of N-body assemblies consisting of identical isotopes of spin- 
polarized hydrogen. Calculations of the ground-state energy were performed for the KW and 
Lennard-Jones (U) potentials, figure I, as well as for a Morse function fit to the KW potential. 
The boson systems were treated variationally with a trial Jastrow-type wavefunction and 
the problem was reduced to obtaining the radial distribution function g(r )  generated by 
the trial wavefunction. They used g(r )  values from approximations such as the Born- 
Bogoliubov-Green-Kirkwood-Yvon (BBGKY), the Kirkwood superposition approximation 
(KSA) and hypemetted-chain (HNC) approximate integral equation, and confirmed that HJ 
can never form a liquid phase for T = 0 and zero pressure. We compare our results with 
the BBGKY ones. Stwalley and Nosanow [7] showed that spin-aligned isotopes exhibit even 
more extreme quantum behaviour than the helium isotopes: HJ was predicted to be a gas 
at all temperatures. Lantto and Nieminen 1121 calculated the ground-state properties of 
HJ based on the variational Jastrow-type many-boson optimized wavefunction in the HNC 
approximation. The variational calculation of Ristig and Lam [ 141 is based on an optimized 
trial wavefunction with intra-atomic hyperfine mixing and interatomic spatial correlations. 
The respective radial distribution function g ( r )  was calculated by employing the HNC 
procedure. More recently, Haugen and 0stgaard [ 151 introduced a modified lowest-order 
constrained-variational method to calculate the ground-state properties of spin-polarized 
hydrogen isotopes for five different two-body potentials. Except for the work of Miller and 
Nosanow [IO], Haugen and 0stgaard [151 and Greef et a1 [16], all calculations thus far 
have been restricted to low values of density. 

In a recent series of papers [17-311 the ground-state energy of several quantum many- 
body systems has been computed through a generalization of van der Waals’ original idea 
to describe classical fluids by separating the attractive part of the elemenmy two-body 
force from the short-range repulsions. This perturbative approach to quantum fluids- 
hereafter called quantum thermodynamic perturbation theory (qTpr thas  been applied in 
first-principles calculations [30,311 of the ground-state energy of liquid helium4 CHe) and 
the results lie within the accuracy of GFMC simulations. This success has encouraged the 
present work. 

In section 2 we present a brief review of the Q T P ~  method for bosons; in section 3 we 
obtain the ground-state energies of spin-polarized hydrogen and tritium fluids interacting via 
the U and KW [321 potentials using both the Barker-Henderson (BH) [33] and the Weeks- 
Chandler-Anderson (WCA) [341 prescriptions to decompose the potential into a repulsive 
core plus an attractive tail. Section 4 gives the results and discussion; and section 5 states 
our conclusions. 

2. Quantum thermodynamic perturbation theory for bosons 

We consider an N-boson system in a volume S2 such that the particle density is given by 
p = N/ S2. At low densities quantum-field-theoretic diagrammatic techniques employing 
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Figure 1. Lend-Jones (U) and Kolas-Woiniewicz (KW) potentials behueen huo hydmgen 
atoms in the triplet electronic state. Inset: the interaction in the singlet and hiplet elechonic 
states of hydrogen compared with that of WO helium atoms. 

infinite partial summations of successively less divergent terms give for the ground-state 
energy per particle of the boson system [35] the non-analytic infinite series 

E / N  = (2zh2/m)pu[l + Cl(pn3)”2 + Czpa31n(pa3) +C3pn3 + O[(pa3)3’Zln(pa3)]] 

(1) 
where C, and Cz are known dimensionless coefficients that do not depend on the potential. 
The coefficient C3 and all successive coefficients are unknown and depend on the form of 
the interaction potential. Here U is the two-body S-wave scattering length which can be 
either positive or negative. Equation ( I )  is a complex quantity for most systems of interest 
where U < 0. 

As described in [17]-[31] it is convenient to separate the pair potential V(r)  into the 
following repulsive and attractive parts: 

V(r )  = Vmp(r) +AV,&) 0 5 A 5 1 (2) 

where Val&) is negative and where A = 1 corresponds to the full interaction, figure 2. The 
decomposition defined by (2) suggests an expansion of the scattering length a in powers of 
the attractive coupling h: 

a = a~ +ulA+u2A2 f . . . (3) 

is manifestly positive, while ai c 0 for all i = 1,2,. . .. Inserting (3) into (1) where 
yields the series 
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where each e&) is, in tum, a non-analytic infinite series in x 

M A SONS et a1 

namely 

ei(x) = I + ~ l ; x + C 2 i x ~ I n x ~ + ~ ~ l x ~ + . . . .  (5) 

The dimensionless coefficients Cli and CZ, i = 1.2, . . . ,6, have been deduced [28] through 
the computer algebraic software package called MACSYMA [36], in terms of the C1, CZ, al. 

az, . . . ,US of (1) and (3). In tables 1 and 2 we display these coefficients for both the W and 
KW potentials. Clearly, CIO = CI and Cm = C2. (4) can be interpreted as a pemnbation 
series about a reference (or unperturbed) system of repulsive spheres, and the energy is now 
real at all values of the attractive coupling A. The appearance of the logarithmic term does 
not admit application of standard methods to accelerate convergence in power series such 
as Pad6 approximants. We therefore need a more general scheme of the form 

ei(x)+(x) (6) 

where E, (x )  is a generalized extrapolant representing the series (5) subject to the constraint 
that, upon expansion about x = 0. it reproduces exactly the known coefficients Cij of e&). 
Evidently, such a representation is not unique. The number of approximants e;(x) for each 

will depend on the number of coefficients Cji, j = I , & .  . ., we wish to reproduce 
in the series (5). So, to reproduce it with three terms there will be four so-called ‘tailing 
approximants’ 128,371 

Form (i) 1 + Cl;/(I - CzxInxz /C l i )  
Form (ii) ( I  - Clix - Czx2 Inx2)-’ 
Form (iii) (1 + C ~ x ~ I n x ~ ) / ( l -  Cl ix )  

Form (iv) ( I  + C l i x ) / ( l  - C2x2 lnx2) 

which we have called the ‘small family’ of extrapolants. To reproduce up to the Cwx2 
term of the series (5). twelve tailing approximants are possible which we designate form (I), 
form (11). . . ., form (XU) and collectively call the ‘large family’ of extrapolants. A complete 
list of these for bosons is given in [311. We use mainly the ‘small family’ approximants 
that reproduce the first two known coefficients in (5). but we needed to employ the ‘large 
family’ in order to deduce acceptzble hard-sphere E&) and fourth-order E&) extrapolants 
for Tc with the KW(BH) and KW(WCA) interactions, where the small family was found to be 
insufficient. Figure 3 shows a graph for HI with KW(BH) of the small family of extrapolants 
~ ( x )  to the series el@), labelled 0, given by (5) with i = 1. 

Figure 2. Barker-Henderson (BH) and Weeks-Chandler-Anderson (WCA) decomposition for the 
potential V l r )  into repulsive and aftractive pms. 
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Table 1. Coefficients Cp.  j = 1.2. i = 1.. . . .6, of (5) for H1 for the U and KW potentials 
decnmposzd according to the BH and WCA methods. 

i 

j l  2 3 4 5 6 

2 78.61566 -119.4189 -75.17803 21.0166 133.4027 U45247 

2 78.61566 -110.6270 -75.23029 6.303 165 105.2795 191.7065 

2 78.61566 -108.2831 -79.86681 '7.758237 118.0404 214.0963 

2 78.61566 -99.64543 :77.0681 -7.186953 84.02801 169.7419 

W BH 1 12.03605 -3.123486 -10.96471 -15.54253 -16.44992 -1276649 

WCA I 12.03605 -2.450462 -9.900332 -14.4709 - 15.908 74 - 13.506 00 

KW BH I 12.03605 -2271039 -10.28664 -15.20743 -16.62314 -13.68629 

WCA 1 12.03605 -1.MM827 -8.959857 -13.71298 -15.64701 -14.16162 

Table 2. As table 1, but for Ti. 

i 

j l  2 3 4 5 6 

U BH I 12.03605 -2.218412 -9.604303 -14.21511 -15.80707 -13.70903 

WCA I 12.03605 -1.669831 -8.718381 -13.27498 -15.20413 -13.97685 
2 78.61566 -107.5956 -75.56914 2.155968 98.34587 184.2803 

2 78.61566 -100.4293 -74.68741 -7.995518 77.27370, 157.5700 

2 78.61566 -92.91.144 -78.48218 -14.24332 73.90165 159.8783 

2 78.615% -86.92301 -74.61566 -2249754 50.90822 1263108 

KW BH I 12.03605 -1.094341 -8.478799 -13.37401 -15.56241 -14.49181 

WCA 1 12.03605 -0.6359263 -7.430579 -12.09032 -14.52228- -14.32084 

\ I 
Figure3. Flrst-orderapproximanls~~(xlforH. forthe 
KW(BH) potential. Roman numerals indicate the form of 
the approximant defined belou (6). and '0' refers lo 
the orieind series (S) for i = I .  

Figure4 Optimumapproximantst,(x). (i = 1. ..., 6) 
for H' from the analysis for the KW(BH) potenrial. The 
Roman numerals in parentheses specify the appmximant 
used among the fou~ defined below (6). Also displayed 
i s  the appmximanr ra(x,  for the cnerg of the hard- 
sphere fluid (8). The close packing value of xg = 
0.7245 is also indicated by the open circle. 

The available extrapolants in each order are constrained by the following global physical 

( i )  For i = 0. the repulsive-sphere system E&) has a second-order pole, due to the 

conditions: 
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uncertainty principle, at some density p = p g  and hence at x = xg, corresponding to close 
packing. 

M A Solfs er a1 

(ii) e&) has no singularities in the physical region, i.e., in the region n c xe. 
(iii) From straightfonvad perturbation theory and due to the negativity of V,, it can 

be shown [ E ]  that for all 0 c x c x~ 

q(x) > 0 E&) w 0. (7) 

(iv) EI(X) must be monotonically increasing as can be argued from first-order 
perturbation theory. 

The above constraints are rigorous; additional conditions can be imposed on physical 
grounds as follows: 

(v) The ground-state energy of the hard-sphere system has been studied extensively. 
We therefore use a hard-sphere representation for E&) that has a characteristic close 
packing density pole at some density, say p ~ .  A theorem [38] in classical thermodynamic 
perturbation theory suggests that €1 (xg) = constant, while ~ i ( x g )  = 0, for i ? 2. 

These constraints hopefully provide an essentially unique extrapolant for boson systems, to 
be designated the optimal extrapolant. 

In [ 171 and [27] the optimal representation for the boson hard-sphere reference system 
has been obtained from (4) (setting A = 0). The resulting approximant is 

where C ~ O  is the next term order contribution of (1) with h = 0, i.e., the term of order 
pa3, involving the unknown constant C3. A fit [27] to the available Green-function Monte 
Carlo (CFMC) data [39] for liquid 4He yields the value c30 = 25.11, and the second-order 
pole apparently corresponding to a closepacking density is at x~ = 0.7245. The results for 
the ground-state energy of 4He have been published recently 130,311. Here we merely note 
that Qm gives agreement with the GFMC data within the statistical error of the simulations, 
as well as good agreement with laboratory experimental data, particularly with the more 
realistic Aziz interatomic potential. 

3. Spin-polarized hydrogen and tritium 

It is well known that the hydrogen molecule H2 results from the interaction of two hydrogen 
atoms in their ground state through a comparatively ataactive singlet potential. This 
contrasts with a predominantly repulsive electronic triplet potential, figure 1, inset. The 
singlet potential is responsible for the binding of Hz. This fact has stimulated the study 
of hydrogen atoms interacting purely via the electronic tr@& potential, in order to exhibit 
macroscopic quantum behaviour expected to be even more extreme than that observed 
with the helium isotopes. A strong magnetic field can produce spin-polarized hydrogen 
(H1), deuterium (DL) or tritium (Tr), of which Hc and TA are boson particles. Theoretical 
calculations [IO, 12,141 have suggested that H1 does not form'a liquid phase under either 
the U or the KW interactions, figure 1. In contrast, Ti is similarly expected to be a weakly 
bound liquid. Here we study the bosonic systems HI and TI, whose atoms interact via the 
spin-polarized triplet state (designated 'I$) with either an LJ potential with U = 3.689 A 
and E = 6.464 K, or the KW potential with the Silvera [ l l ]  fit. The attractive and repulsive 
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parts of the potential are separated out as suggested by BH [331 and by WCA [34], figure 2. 
Depending on the potential between the particles and the mode of decomposition, we shall 
refer to the interaction as W(BH), W(WCA), KW(BH) or KW(WCA). 

The QTPT method applied to these systems up to sixth order in A with the constraints 
mentioned above yielded the following approximants to the e&) series in (4): 

E;(x) forms for HL 
Potential i= I 2 3 4 5 6 
W(BH) (i) (i) (i) (ii) (ii) (ii) 
U(WCA) (i) (i) (i) (ii) (ii) (ii) 
KW(BH) (i) (i) (i) (ii) (ii) (ii) 
KW(WCA) (i) (i) (i) (ii) (ii) (ii) 

~i ( x )  forms for TL 
Potential i= I 2 3 4 5 6 

(i) (i) (i) (iii) (ii) (ii) 
U(WCA) (i) (i) (i) (ii) (ii) (ii) 
KW(BH) (i) (i) (i) (IlI) (ii) (ii) 
KW(WCA) (i) (i) (i) (HI) (ii) (ii) 

These sets of extrapolants have been chosen by analysis similar to that of [30]. For example, 
we summarize in tables 3 and 4 the results of analysis to obtain the energy coefficients for 
HL with U ( w a )  and TL with KW(WCA), respectively. Figure 4 illustrates the optimum 
extrapolants E ; ( X )  for H+ with KW(BH) for orders i = 06. The open circle on the x axis 
marks the location of XB = 0.7245. Note that for the highest orders, E&), E&) and 
E&), good Stell-Penmse behaviour q(x) Y 0 is easily achieved. The possible E&) from 
the small family of approximants for Ti with KW(BH) and KW(WCA) did not satisfy the 
aforementioned constraints, so it was necessary to use the large family of approximants. 
This introduced the need to determine the unknown coefficients CH requiring good Stell- 
Penrose behaviour at the close-packing density x g  = 0.7245. For both cases, KW(BH) and 
KW(WCA), the optimum approximant was found to be form (In), with C,, = 151.224 and 
114.937, respectively. It is clear that an accurate determination of the scattering length 
expansion parameters (3) is needed for each different two-body interaction describing the 
system. There exists a very precise (fourteen-digit accuracy) calculation of the low-energy 
scattering parameters (3) [40,41] for the hydrogen and tritium isotopes interacting with the 
U, as well as with the KW, interaction. - 

In replacement of (4), the final expression for the energy is now given by 

(9) 

with the extrapolants q(x) determined as discussed above. The particle masses m used 
are given by h2/m = 48.133716 K A2 for HL, and A2/m = 16.08971 K A2 for TI. The 
pressure P(p)  and the sound velocity c(p) as functions of the density can be obtained from 
(9) through the following thermodynamic relations: 

P ( P )  = P ~ ~ [ E ( P ) / N I / ~ P  

muz = d[P(p)]/dp. 

The derivatives were performed with the computer algebraic program REDUCE [42]. 
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Table 3. For H’, summary of density-series analyses to determine optimum appmximanfs 
ei(x),  marked with asterisks, for the U potential decomposed according to the WCA method. 
Abbreviations: VP = violates positivity; NMI = non-monotonically increasing: BSPB bad Stell- 
Penrose behaviour. 

Form Approximant € 1  62 63 €4 €5 €6 

0 I + Kix + Kix2 In%’ VP BSPB BSPB BSPB BSPB BSPB 

- - - BSPB pole at pole at KIX 
I +  I+K2/Kl+lnr2 (0 

x = 0.02 x = 0.01 

NMI poleat poleat - - - I 
1 - Klx - K2x11nx2 

(ii) 
x = 0.05 x = 0.01 

I + K2x2 Inx2 
I - KIX 
I + Kix 

1 - Klx’ Inx2 

(iii) VP BSPB BSPB BSPB BSPB BSPB 

NMI pole at poleat BSPB BSPB BSPB 

x=o.o4 x=0.06 

Table 4. As table 3 but for T1 and for the KW potemid decomposed according to the WCA 

method. To obtain q(x)  it was necessary to use Ibe ‘large family’ of E&): form (110 was 
chosen, with K1 = 114.937. Abbreviations as table 3. 

Form Approximant fI 62 €3 €4 h 66 

0 1 + Klx + K2x2 lnx2 VP BSPB BSPB BSPB BSPB BSPB 

NMI pole at p l e a t  BSPB - - 1 
I - Kix - K2x21nx2 

1 + K2x21nx2 
1 - Kxr 

(ii) 
x = 0.06 

(iii) W BSPB BSPB (IlV BSPB BSPB 

x = 0.06 

1 i - K ; ~  
NMI poleat pole af pole at BSPB BSPB 

x = 0.06 x =O.M x =0.1 
(iv) 1 - K2x21nx2 

With K3 = 114.937. 

4. Results and discussion 

Figure 5 illustrates how rapidly QTW converges with KW(BH) for H1 as of second order in 
the A series (9). The notation [LIO] refers to the Lth partial summation of the A series (9). 
and comes from the more general notation [MINI for the Pad6 approximant of order M + N .  
Use of these approximants in A was necessary in liquid 4He [30,31], where the attractive 
interaction is comparatively much stronger than in H1. As expected, figure 5 shows that 
QTCT is in good agreement with the variational calculations of Miller and Nosanow [lo], 
denoted by open circles in the figure. The figure is an amplification of the energy curves 
where the difference in energy between orders 4 and 5 in A is at most 0.001 K. In figure 6 
we show optimum E ~ ( x ) ,  i = I ,  2,.  . . , 6  for TL with the KW(WCA) potential. Lower-case 
Roman numerals refer to the form of the extrapolant of the ‘small family’ and capital 
Roman numerals refer to the ‘large family’. When we introduce in (9) the corresponding 
ei(x) for T1 with the potential KW(BH), we obtain the energies per particle (9). given by 
[LIO], L = 0, 1, . . . , 6 ,  figure 7. Their convergence becomes very acceptable beyond fourth 
order in A. Figure 8 is a scale amplification of figure 7. In both figures filled circles refer 
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0 
PXlO’n-” 

Figure 5. First w e n  partial sums [L/O], L = 0.1.. .~. ,6. of (9)  for EIN. the energy per 
panicle, as a function of density, for Ihe KW(BH) potential. open circles are the KW variational 
mulL of Miller and Nosanow. Inset: expanded scale showing convergence rate f” third to 
sixth order of m. 

Figure 6. As figure 4, 
but for T1 with potential \ KW(WCA). 

to the results of Miller and Nosanow (IO], with which we again have good agreement. 
We summarize all our results in figure 9, where energy per particle versus density 

curves for HJ as well as TJ are. displayed, using the interactions U(BH), ~(wcA) ,  KW(BH) 
and KW(WCA). We also include variational results obtained recently by other authors. Our 
curves refer to results obtained by substitution of the series ei(x) in (4) with the optimal 
representations ei(x)~in (9). For HJ, our results show a systematic trend towards a softer 
equation of state (EQS) as compared with the variational calculations of Miller and Nosanow 
[IOl. Haugen and Ostgaard [151, Ristig and Lam (141, Fitters et a1 Monte Carlo (MC) [4] 
and Lantto and Nieminen [12]. However, at higher densities, our EOS becomes more rigid 
due to the hard-sphere reference system described by (8). Thus, most of our energy curves 
lie below those of the variational calculations. In contrast, the agreement with the TJ 
calculations of Miller and Nosanow is very good for this self-bound liquid boson system, 
the agreement with those of Haugen and Ostgaard is only moderately so. 



5792 M A Solis et a1 

[Kl 

but far TL 

T i  KW(BH) 

As figure 5,  
with potential 

-3.8 - 

1 MBN Figure 8. As figure 7. but 
amplified in scale. 

At the saturation density (zero pressure) our results predict the following T1. equilibrium 
densities, binding energies, and sound velocities, depending on the interactions: 

Interaction p (A-3) E / N  (K) c (m s-’) 
LJ(BH) 0.0079 f O.OOOO4 -4.22 f 0.02 15.97 & 0.1 
W(WCA) 0.0075 ” -4.26 ” 16.04 ” 

KW(BH) 0.0082 ” -3.83 ” 14.63 ” 
KW(WCA) 0.0073 ” -3.21 ” 14.11 ” 

The ‘errors’ quoted in the energy per particle, the density and the sound velocity correspond 
to the calculated spread in the sixth-order Pad6 curves in A, namely [6/01, [S/l], [4/21, [3/3], 
W41, and [1/51. 
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z 
W 
. 

T KW (H&B 
Figure 9. Our resulls (full curves) for the sixthth-order ground-state energy per particle as function 
of the density. for Hi and TL. Also. shown are the varialional energies calculated for these two 
fluids by several authors as derailed in the text. 

5. Conclusions 

We have obtained the ground-state energy for the boson fluids HJ and T1, for a wide density 
range. The pressure and the sound velocity can also be obtained but are not reported here. 
Our results agree at very low densities with all variational calculations canied out on these 
bosonic fluids, and at higher densities generally lie below them in energy for HJ. 

The QTpr is again found to be a simple, inexpensive, reliable and accurate method 
for the calculation of the ground-state properties of quantum fluid systems. Since it exactly 
reproduces the first known coefficients of the lowdensity expansions for these fluid systems, 
it incorporates the maximum amount of rigorous information, and can furthermore be made 
more precise as higher-order coefficients in these expansions become available. 

No adjustable parameters were used, even though results are sensitive to the way the 
pair potential is split; this also OCCUIS in the TIT of classical fluids, considered to be the best 
theory of classical liquids. For example, our condition (ii) above is strictly a mathematical 
property of the first-order energy only, and is consistent with the general expectation that 
the fofal energy will likely possess a singularity Mow saturation density. But this density 
region cannot be trusted in its entirety from this or any other calculation that starts from 
lowdensity information. Also, the Bema1 density for hard spheres will not be the comct 
value for a sofr-sphere fluid (since such a density value would be strictly infinite here), but 
aids in ‘taming’ the density approximants at the higher-density end, which is much too high 
compared with physical saturation densities anyway. Explicit justification of the validity of 
QTIT at liquid densities is sketched in [28]. 

Finally, a definitive test of all calculations would be provided by benchmark G m C  
simulations for these systems. 

- 
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